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Collisionless	Shocks	are	Prevalent	in	Many	Space	and	Astrophysical	
Systems

• Collisionless	shocks	convert	the	ram	pressure	of	
incoming	supersonic	flows	to	thermal	pressure	
over	length	scales	much	shorter	than	the	
collisional	mean	free	path
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Collisionless	Shock	Studies	Originated	with	Laboratory	Experiments

• Pioneering	experiments	were	carried	out	soon	after	the	
discovery	of	collisionless	shocks
• Successfully	generated	collisionless	shocks
• But	limited	diagnostics,	magnetic	geometries,	and	Mach	
numbers

• Laser-driven	experiments	appeared	shortly	thereafter
• More	flexible	experimental	parameters
• But	not	enough	laser	energy	to	drive	full	shocks

• Ultimately,	experiments	replaced	with	satellite	missions
• Very	successful	at	measuring	Earth’s	bow	shock
• But	largely	limited	to	1D	datasets,	lower	Mach	numbers	
(M<10),	and	pre-formed	conditions
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Collisionless	Shock	Studies	Originated	with	Laboratory	Experiments

• Experiments	in	the	1960s-1970s	pioneered	laboratory	
shock	experiments
• Successfully	generated	collisionless	shocks
• But	limited	diagnostics,	magnetic	geometries,	and	Mach	
numbers

• Laser-driven	experiments	appeared	in	the	1970s-1980s
• More	flexible	experimental	parameters
• But	not	enough	laser	energy	to	drive	full	shocks

• Experiments	replaced	with	satellite	missions	by	the	1990s
• Very	successful	at	measuring	Earth’s	bow	shock
• But	largely	limited	to	1D	datasets	and	pre-formed	conditions
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Many	questions	still	unanswered:

• How	are	particles	injected	into	shock	acceleration	mechanisms?

• What	are	the	characteristic	scales	of	shock	formation	and	reformation?

• What	is	the	role	of	turbulence	and	reconnection	in	high-Mach	number	shocks?

Laboratory	experiments	can	thus	complement	spacecraft	and	remote	sensing	measurements.



Laboratory	Experiments	can	Reproduce	the	Physics	of	Space	and	
Astrophysical	Collisionless	Shocks	in	a	Controlled	Setting

• Collisionless	shocks	are	an	active	area	of	research
• Electrostatic
• Weibel-mediated
• Magnetized

• A	new	class	of	collisionless	shocks	experiments	that	
utilize	a	laser-driven,	magnetically-coupled	piston	is	
now	available
• Wide	range	of	Mach	numbers	(M<40)
• 2D	and	3D	datasets	
• Quasi-perpendicular	and	quasi-parallel	magnetic	
geometries
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Kuramitsu,	et	al.,	PRL,	2011
Haberberger,	et	al.,	Nature,	2011
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Experimental	Setup	for	Quasi-Perpendicular	Shocks	on	Omega	EP

• MIFEDS	coils	provide	
background	magnetic	field	~	8T
• Heater	beam	ablates	ambient	
plasma	(ni,0≈1018	cm-3)	12	ns	
before	drive	beams
• Drive	beams	create	supersonic	
piston	plumes	that	expand	into	
ambient	plasma
• Diagnostics:	
• Angular	Filter	Refractometry
(AFR)
• Shadowgraphy
• Proton	radiography
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AFR	Diagnostic	Measures	Density	Gradients
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Null	Shots	Show	No	Shock	Features
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Propagating	Density	and	Magnetic	Compressions	Observed	with	B0≠0	
and	n0≠0
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Propagating	Density	and	Magnetic	Compressions	Observed	with	B0≠0	
and	n0≠0
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• Expanding	at	700	km/s,	yielding	Mms ≈	12
• Density	compression	n/n0 ~	3-4
• Magnetic	compression	B/B0 ~	2-4
• Compression	width	! >	1	c/"pi

Proton	Radiography

Magnetic
CavityMagnetic

Compression

3.80	ns

shadowgraphy

2.35	ns
simulation



PIC	Simulations	Indicate	Formation	of	High-MA Shock

• CH	piston	plasma	expanding	into	
CH	ambient	plasma	embedded	in	
magnetic	field
• Piston	ions	sweep	out	ambient	
ions	and	magnetic	field
• At	early	times,	this	leads	to	the	
formation	of	a	H	shock,	mixed	
with	piston	ions	and	the	
beginnings	of	a	C	shock
• At	later	times,	a	separate	C	shock	
forms	behind	the	H	shock,	and	
the	piston	ions	become	trapped	
behind	the	C	shock
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PIC	Simulations	Indicate	Formation	of	High-MA Shock

• The	formation	of	a	shock	leads	
to	a	double	“bump”	density	
profile,	corresponding	to	the	
leading	shock	and	the	trapped	
piston	ions
• The	density	compression	
associated	with	the	shock	is	
n/n0~4
• The	magnetic	compression	
associated	with	the	shock	is	
B/B0>4
• The	width	of	the	density	
compression	! ~	1 #i
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Data	Profiles	Show	Density	Evolution	that	is	Consistent	with	High-MA
Shock	Formation

• Early	time	density	
compression	mostly	
associated	with	pile-up	of	
piston	ions

shock

piston

• At	late	time	clear	double	
bump	feature	associated	
with	shock	and	trapped	
piston	ionsSchaeffer,	et	al.,	PRL,	2017



Summary	and	Outlook

• We	have	observed	for	the	first	time	the	formation	and	evolution	of	a	
laser-driven,	high-MA (supercritical)	collisionless	shock.		
• The	shocks	are	observed	to	form	within	1	$ci

-1,	which	is	also	when	the	
shock	begins	to	separate	from	the	piston.
• The	results	agree	well	with	2D	PIC	simulations.
• The	development	of	this	platform	allows	the	study	of	high-Mach	number	
shocks	under	a	number	of	ambient	plasma	and	magnetic	conditions.
• Outstanding	problems	that	can	be	addressed	with	laboratory	shock	
experiments?


